Camini Collettivi per App. stagni tipo C - UNI EN 13384-2 - EX_A1 – 2 GENERATORI PER PIANO

DATI

Si consideri una canna fumaria COLLETTIVA PARETE DOPPIA CIRCOLARE (senza condotto aria) in acciaio al servizio di 10 Generatori di calore, disposti su 5 piani, 2 per ogni piano. Riferirsi allo schema grafico dell'esempio.

LE CALDAIETTE HANNO LE SEGUENTI CARATTERISTICHE :

Tipo:	Caldaia camera	stagna	tipo C
potenza termica al focolare		23	kW
portata fumi in uscita dal generatore di c	alore	0.0125	kg/s
temperatura fumi in uscita dal generatore	e di calore	128.7	°C
rendimento utile		93	%
CO2		8	%
tipo combustibile		100	%CH4

LA CANNA FUMARIA HA LE SEGUENTI CARATTERISTICHE :

diametro interno del camino	??	m
diametro esterno del camino	??	m
rugosità della parete interna	0.0001	m
resistenza termica del camino	0.31	m2K/W
Numero piani collegati	3	

ALTEZZE PIANO HP

piano 1 =2.30	m	tipo combustibile	100	%CH4
piano 2 =2.30	m			
piano 3 =2.30	m			
piano 4 =2.30	m			
piano 5 =2.30	m			

ALTEZZE tra i generatori posti sullo stesso piano (sfalsare la posizione dei due allacciamenti di almeno 2 volte il diametro della canna fumaria).

piano 1 =0.70 m piano 2 =0.70 m

piano 3 =0.70	m
piano 4 =0.70	m
piano 5 =0.70	m

fattore di esposizione della canna fumaria all'esterno	S100	%
Tipo comignolo	conico	
Coeff.perdita loc. comignolo	0,0	adim
tipo di raccordo camino-canale da fumo	90°rido	otto

I CANALI DA FUMO HANNO LE SEGUENTI CARATTERISTICHE :

sviluppo	1.50	m
altezza	1.0	m
diametro interno del cdf	0.80	m
diametro esterno del cdf	0.82	m
resistenza termica	0.02	m2K/W
rugosità interna	0.10	mm
Curva	90	0
coefficiente fluidodinamico curva	0.8	adim.
fattore di esposizione del canale fumo/aria	0.0	%

CONDIZIONI DI FUNZIONAMENTO

temperatura aria		20	°C
temperatura esterna di progetto		0.0	°C
altitudine		200	m
apertura di compensazione		N.A.	cm2
coefficiente fluid.apertura > (sezione quadrata)		4	adim
fattore di correzione per temp.non costante	SH	0.5	adim
fattore di sicurezza fluidodinamico	SE	1.2	adim

PROCEDURA DI INSERIMENTO DATI PER ESEGUIRE UN PROGETTO NUOVO

Inserimento dati

Lanciare dall'icona presente sul desktop AsterGen-C; Compare la finestra iniziale e si procede a selezionare "Nuovo":

Compare

Compare la finestra principale; nella parte Sx aprire l'albero dei sistemi fumari fino a raggiungere il sistema Collettivo 2 generatori per piano>>Generatore a tiraggio forzato>>camera stagna uscita sdoppiatore:

Nella parte di Dx si trova l'icona del sistema "Monoflusso 5x2 piani", procedere al doppio click per selezionare il "monoflusso".

Compare di seguito la finestra principale con al centro il sistema in 3D.

E' possibile ora iniziare la definizione del progetto utilizzando i tasti posti a Sx in colonna dall'alto verso il basso.

Anagrafica progetto (vedi sezione precedentedi definizione Anagrafiche)

Dati del progetto: Dati del progetto

Cliccare sul tasto per accedere al Menu "Dati del progetto":

PD_INOX_25					×
Impostazion	i del Progetto		1	Riner	Ho Indian L.
Selezione	del sistema	and the second second	ANI	- A	· JFang
Classe di pressione	[N1] / [P1]	~~ .**	Contraction of the second seco	1.5	S. CIndian
Sistema	Parete Doppia inox sp.25	- 3\BA	ZZ	A STOLLAR	
Metodo di Calcolo	UNI EN 13384-2d	- C	(and a second
Camini in pressione negativa asservit {collettive e sistemi in batteria}	i a più apparecchi di riscaldamento		R	Ster	80 10 0
Verifica di temperatura	Verifica a Umido	ide b		TH	
Secco (assenza di condensa nei fumi) Umido (presenza di condensa nei fumi)			a to of S	V	and tala
Fattore di sicurezza SH	0.5		0		Kruzoff Is C. Edgech
Fattore di sicurezza SE	1.5	T	C	33	ų.
Fattori di sicurezza SH consigliato dall Fattori di sicurezza SE consigliato dall	la norma : 0.5 a norma : 1.5	1		(T)	
Conf. di Disegno			KA.		
ASTER GEN	J. J. J.	26	250	SINAPSI Via Trevisago 35 80 MANERBA d/G (BS Tel. 0365-552481 Fax. 0365-551364 \$	INNOTEC s.r.l. www.sinapsi.net info@sinapsi.net upporto@sinapsi.net
		Genera disegno	Wizard-Calcolo	<pre></pre>	e Annulla

- Si selezione la Classe di pressione (Depressione/Pressione)
- Si selezione il sistema (Doppia parete)
- Il metodo di calcolo valido per il tipo d'impianto selezionato è UNI 13384-2d.
- La verifica è ad Umido.

A compilazione eseguita si seleziona il tasto "Fine"

Si procede alla definizione in sequenza di tutti i tratti costituenti il sistema fumario cliccando sul tasto Wizard-Calcolo:

17. FINESTRA EDIFICIO:

Edificio		
E	DIFICIO	Home Home
Locale installazione caldaia	CENTRALE TERMICA	Ser Ealls
DATI DE	LLA LOCALITA'	St. WIRAN
Stato	ITALIA	
Provincia	MILANO	-Ale The state of
Località	MILANO	and the second second
Latitudine - φ	45.45 °	THE HEAD IN THE
Longitudine - 8	9.18 °	
Altitudine s.l.m z	122 m	
Zona Climatica	E	
Temperatura di Progetto	-5 °C	
	AZIONE / Controls Toronton	
	AZIONE / Centrale Termica	
7 Ventilezione	20.0 °C	
Proceiono Aria		
Flessione Ana	0.00 Fa	
		Mar North
		A Kruzoli /
		C. For
		TC
		ACTA
		ANNA.
ASTER GEN		SINAPSI INNOTEC s. r. l.
		Via Trevisago 35 www.sinapsi.net
52		25080 MANERBA d/G (BS) info@sinapsi.net
		Fax. 0365-551364 supporto@sinapsi.net
		< Indietro Avanti > Annulla

Si selezioni la località (se non già eseguito in precedenza nella scheda delle Anagrafiche). Nel caso si scelga Milano.

Automaticamente sono caricati i dati caratteristici di Milano.

Avanti >

Selezionare

per proseguire

18. FINESTRA COMBUSTIBILE:

Si procede a caricare il combustibile "Metano"

Selezionare

per proseguire

19. FINESTRA GENERATORE:

Generatore					×
	GENERAT	ORE			
Costruttore	G	enerico			
Famiolia	Ti	ipo C			
Modello	C	23kW [r	netanol		
	CENEDATODE	info di	Catalogo		
UATI DEL I	GLNERATORE,	, inio ui terne	Catalogo		
Tipologia di funzionamento		tandard			
Camera di combustione	3	tanuaru			
Tirangio	F	orzato			
Attacco fumi	S	eparato			
Diametro Uscita Fumi	80	0.00 mm			
Diametro Ingresso Aria	80	0.00 mm			
D	ATI DI COMBU	ISTIONE			
	>	>> Copia	carico >>		111
	Carico nom	ninale	Carico minimo		
Potenza Termica Utile	23.00 kW		7.00 kW	212	
Rendimento Utile	93.00 %		93.00 %	5 <u>1</u> 2	
Potenza Termica Focolare	24.73 kW		7.53 kW		
Perdite al mantello	1.00 %		1.00 %		
CO2 fumi anidri	8 %		8		
Pressione in Uscita	60.00 Pa		60.00 Pa		
Temperatura Fumi	128.7 °C		128.7 °C		
Portata Massica Fumi	0.012518 kg/s		0.003810 kg/s		
Portata Volumetrica Fumi	53.16 m³/h		16.18 m³/h		0000
Coefficienti Pwcj	b0,b1,b2,b	3,b4	b0,b1,b2,b3,b4		
Coefficienti Twcj	y0,y1,y2	2)	y0,y1,y2		
Carico spento	b0,b1,b2,b	3,b4)	y0,y1,y2		
ASTER G	EN				SINAPSI INNOTEC s.r.l. Via Trevisago 35 www.sinapsi.net 25080 MANERBA d/G (BS) Tel. 0365-552481 supporto@sinapsi.net Fax. 0365-551384 supporto@sinapsi.net
☑ Copia negli Og	getti Simil	li			< Indietro Avanti > Annulla

Selezione delle caratteristiche del generatore:

GENERATORE:

Costruttore: Generico Famiglia: Tipo C Modello: tipo C 23 kW

DATI DEL GENERATORE:

Sono caricati dall'archivio le caratteristiche di funzionamento Diametro uscita fumi:80 mm

DATI DI COMBUSTIONE:

Vedere dati input:

Coefficienti Pwcj – Twcj: calcolati automaticamente dal programma* Carico spento: calcolati automaticamente dal programma

*possono essere modificati dall'utente cliccando sui relativi tasti:

Coefficienti Pwcj	b0,b1,b2,b3,b4	b0,b1,b2,b3,b4
Coefficienti Twcj	y0,y1,y2	y0,y1,y2
Carico spento	b0,b1,b2,b3,b4	y0,y1,y2

20. FINESTRA CANALE DA FUMO:

DEFINIZIONE CANALI DA FUMO

All'interno della scheda canale da fumo scegliere

Costruttore:		generic	ю
Parete:		Allumin	io
Diametro	:	80	mm

DATI DEL CONDOTTO:

sono automaticamente caricati i dati relativi al diametro 80 mm secelto

DATI DELL'INSTALLAZIONE:

Altezza:	0.5	m
Sviluppo:	1	m
Esposizione:	0.0	%

PERDITE DI CARICO:

Perdite di carico: 1 curva 90°, equivalente a 0.6

Selezionare

per proseguire

21. FINESTRA CANALE ARIA:

Canale aria			
C	anale Aria	1	SVØ 18990
Costruttore	Generico	1010 CUAR	somma dei tratti orizzontali
Selezione della parete	Monoparete Alluminio	ARIA FOM	
Diametro da utilizzare	80 Alluminio		tratti verticali
DAT	I DEL CONDOTTO	WZZZ	
Forma interna	CIRC		
Diametro interno	80.00 mm		
Rugosità interna	0.50 mm		
Forma esterna	CIRC		
Diametro esterno	81.00 mm		
Rugosità esterna	0.50 mm		
Resistenza termica	0.400 m²K/W		
DATI D	ELL'INSTALLAZIONE		
Altezza	0.50 m		
Sviluppo	1.00 m	-	
Esposizione all'esterno	0 %		
PE	RDITE DI CARICO		
Descrizione	Coeff. Q.tà		
Curva 15°	0.12 0		
Curva 30°	0.20 0		
Curva 45°	0.40 0		
Curva 90°	0.60 1		
ASTER GE	N		SINAPSI INNOTEC s.r.l.
			Via Trevisado 35 www.sinapsi.pet
32			25080 MANERBA d/G (BS) info@sinapsi.net
			Fax. 0365-551364 supporto@sinapsi.net
✓ Copia negli Oggetti Simi	11		< Indietro Avanti > Annulla

DEFINIZIONE CANALI ARIA

All'interno della scheda canale aria scegliere

Costruttore: generico

Parete: Alluminio

Diametro : 80 mm

DATI DEL CONDOTTO:

sono automaticamente caricati i dati relativi al diametro 80 mm scelto

DATI DELL'INSTALLAZIONE:

Altezza:	0.5	m
Sviluppo:	1	m
Esposizione:	0.0	%

PERDITE DI CARICO:

Perdite di carico:	1 curva 90°, equivalente a 0.6
Avanti	

Selezionare per proseguire

22. FINESTRA TRATTO DI PARTENZA:

23. FINESTRA INTERPIANO:

Interpiano	_		×
IN	TERPIANO		
Selezione della parete	Parete Do	ppia inox sp.25	0
Diametro da utilizzare	Prova tutti	i diametri	h
DATI DEL C	ONDOTTO VERT	ICALE	H
Forma interna		CIRC	
Diametro Interno		0.00 mm	fumi
Rugosità interna		0.00 mm	
Forma esterna		CIRC	aria
Diametro Esterno		0.00 mm	
Rugosità esterna		0.00 mm	÷ 3
Resistenza termica		0.000 m ² K/W	
DATI DE	LL'INSTALLAZIO	DNE	ži Pe
Altezza (H)		2.75 m	Atte
Sviluppo (L)		2.75 m	
Esposizione all'esterno		100 %	fumi
Raccordo		Raccordo a 90° rid.80	aria
PER	DITE DI CARICO		
Descrizione	Coefficien	Q.ta'	
Curva 15°	0.12	0	
Curva 30°	0.20	0	
Curva 45°	0.40	0	
Curva 90°	0.60	0	
			CON INC.
ASTER GEN			SINAPSI INNOTEC s. r. l.
			Via Trevisago 35 www.sinapsi.net
<u>S2</u>		U.	Tel. 0365-552481 info@sinapsi.net
		A CONTRACT	Fax. 0365-551364 supporto@sinapsi.net
🛛 Copia negli Ogget	ti Simili		< Indietro Avanti > Annulla
, 5 - 55 -			

Scheda Interpiano

All'interno della scheda Interpiano scegliere:

Selezione della Parete: doppia parete

Diametro : Prova tutti i diametri

DATI DEL CONDOTTO:

lasciare vuoto (sarà poi compilato automaticamente alla fine del progetto una volta trovato il diametro ottimale)

DATI DELL'INSTALLAZIONE:

Altezza:	2.30	m
Sviluppo:	2.30	m
Esposizione:	100.0	%
Raccordo:	T90° rio	dotto

PERDITE DI CARICO:

24. FINESTRA TRATTO TERMINALE:

Scheda Tratto Terminale

All'interno della scheda Tratto Terminale scegliere:

Selezione della Parete: doppia parete

Diametro : Prova tutti i diametri

DATI DEL CONDOTTO:

lasciare vuoto (sarà poi compilato automaticamente alla fine del progetto una volta trovato il diametro ottimale)

DATI DELL'INSTALLAZIONE:

Altezza:	3.00	m
Sviluppo:	3.00	m
Esposizione:	100.0	%
Raccordo:	T90° rio	dotto

PERDITE DI CARICO:

Perdite di car	ico:	Nessuna
Salazianara	Avanti >	
Selezionare		per proseguire

25. FINESTRA TERMINALE:

Terminale	
TERMINALE	
Tipologia di terminale Tronco di cono	
DATI DEL TERMINALE	
Coeff. di perdita concentrata 0.00 []	
	mut
	A MARTINE MARTINE
	the there is a second s
ASTER GEN	SINAPSI INNOTEC s.r.l.
	25080 MANERBA d/G (BS) Tel 0365,552481 info@sinapsi.net
	Fax. 0385-551364 supporto@sinapsi.net
	Indietro Fine Annulla

All'interno della scheda terminale scegliere Forma: Tronco di Cono

Selezionare Fine per proseguire e avviare il calcolo

enta	Verifica	Funzionamento	Camino	Canale Fumo	Pressione [Pa]	Velocità [m/s]	Temp.Par.Est. [°C]	Relazione	Relazione
1	×	Pressione	130 Parete Doppia inox sp.25 Si Guarn	80 Parete Semplice Si Guarn	-0.1	3.36	32	Report Dettagliato	Report Ridotto
~	A	Pressione negativa	150 Parete Doppia inox sp.25 Si Guarn.	80 Parete Semplice Si Guarn.	10.7	2.54	32	Report Dettagliato	Report Ridotto
	ø	Pressione negativa	180 Parete Doppia inox sp.25 Si Guarn.	80 Parete Semplice Si Guarn.	17.7	1.76	31	Report Dettagliato	Report Ridotto
-	A	Pressione	200 Parete Doopia inox sp 25	80 Parete Semplice Si	19.6	1 42	31	Report Dettagliato	Report Ridottr
CASO-1	E CASO-2	CASO-3	4 E CASO-5	E CASO-6	CASO-7	0-8 🗾 Note			
Variabile		Gen. 1	Gen. 2	Gen. 3					
Stato acce	nsione	ON 100%	ON 100%	DN 100%					
Pressione	e [Pa]	10.7>(0.0)	3.9>(0.0)	0.1>(0.0)					
Temperat	min <v<vmax [m<="" td=""><td>63 4>(0.0)<0.8<(10.0)</td><td>73.0>(0.0)</td><td>7 2>(0 0)</td><td></td><td></td><td></td><td></td><td></td></v<vmax>	63 4>(0.0)<0.8<(10.0)	73.0>(0.0)	7 2>(0 0)					
Massa my	Vc>mW [kg/s]	0.0131>(0.0125)	0.0130>(0.0125) 0.01	130>(0.0125)					
Sovrapres	sione Max [Pa]	-4.8<(200.0)	1.5<(200.0) 4	.5<(200.0)					
11									
1-									
1									
1									
1									
1									
1 .9 .8 .7 .6 .5									
1									
1 .9 .8 .7 .6 .5 .4									
1									
1 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1									
1									
1									

Menù Risultati del Calcolo

Al termine del calcolo non premere il tasto "Applica soluzione al progetto" ma premere il tasto "**Chiudi**".

Questo permette di apportare le modifiche necessarie alla ridefinizione degli interpiani al fine di alternare sui vari tratti della canna fumaria i valori di distanza tra gli interpiani e di distanza tra 2 allacciamenti presenti allo stesso piano. Seguire l'esempio:

La ridefinizione dei dati dimensionali di ogni interpiano viene effettuata selezionando i tratti da aggiornare direttamente tramite un click dallo schema 3D come segue:

Si procede a effettuare doppio click sul primo interpiano (evidenziato in verde) - quota "d" - per impostare il valore della distanza tra due allacciamenti presenti allo stesso piano. Come precedentemente specificato i 2 allacciamenti dovranno essere sfalsati di una quota pari ad almeno 2 volte il diametro calcolato della canna fumaria; quindi, nel caso in oggetto, con un diametro della canna fumaria di 350 mm si dovrà impostare una quota non inferiore ai 700 mm di distanza tra i 2 T90 di allacciamento presenti allo stesso piano.

Si procede con la stesso metodo per tutti i tratti di interpiano definiti dalla quota "d" lasciando invece invariati gli interpiani definiti dalla quota "Int.".

Ne risulterà alla fine dell'aggiornamento un'alternanza tra gli interpiani di 2.75 m (distanza tra 2 piani) e la distanza tra 2 allacciamenti presenti allo stesso piano di 0.70 m.

Interpiano			
INTERPI	ANO		
Selezione della parete Pa	arete Doppia inox sp.25		0
Diametro da utilizzare Pro	ova tutti i diametri		h
	O VERTICALE		H
Forma interna	CIRC		A Y
Diametro Interno	0.00 mm		fumi
Rugosità interna	0.00 mm		
Forma esterna	CIRC	aria	
Diametro Esterno	0.00 mm		
Rugosità esterna	0.00 mm		2 2
Resistenza termica	0.000 m²K/W		E E
DATI DELL'INSTA			d b z z a
Altezza (H)	0.7 m		ttei ii
Sviluppo (L)	0.70 m		v A
Esposizione all'esterno	100 %		
Raccordo	Raccordo a 90° rid.80 -	aria	tumi
PERDITE DI C	ARICO	/	
Descrizione Co	pefficien Q.ta		
Curva 15° 0.1	12 0		
Curva 30° 0.2	20 0		
Curva 45° 0.4	40 0		6,0
Curva 90° 0.6	60 0		
		Der	
ASTER GEN			SINAPSI INNOTEC s.r.l.
	8 11		Via Trevisago 35 www.sinapsi.net
<u></u>	ST.		Tel. 0365-552481 info@sinapsi.net
	A LE CONTENT		Fax. 0365-551364 supporto@sinapsi.net
Copia negli Oggetti Simi	li		<pre>< Indietro Avanti > Annulla</pre>

Nota: ad ogni ridefinizione degli interpiano mantenere **Deselezionata** l'opzione "**Copia negli oggetti simili**" presente nella parte sinistra della finestra "interpiano" per evitare che venga riportato il nuovo valore su tutti gli interpiani successivi.

Risulta	ti del calcolo		-					_	-			X
	Scelta	Verifica	Funzionamento	Camino	Canale F	umo Pr	ressione [Pa]	Velocità [m/s]	Temp.Par.Est. [°C]	Relazione	Relazione	-
		×	Pressione negativa	250 Parete Doppia inox sp.25 Si Guarn.	80 Pare 5 Semplice Guarr	ete e Si n.	28.3	3.51	31	Relazione Dettagliata	Relazione Ridotta	
		*	Pressione negativa	300 Parete Doppia inox sp.25 Si Guarn	80 Pare 5 Semplice Guarr	ete e Si	41.9	2.50	30	Relazione Dettagliata	Relazione Ridotta	
		ø	Pressione negativa	350 Parete Doppia inox sp.25 Si Guarn	80 Pare 5 Semplice Guarr	ete e Si	47.6	1.85	29	Relazione Dettagliata	Relazione Ridotta	
	F	A	Pressione	400 Parete Doppia inox sp 25	80 Pare	ste e Si	50.1	1 42	29	Relazione	Relazione Ridotta	-
	■	=] =] =] E] E]	=] = .	.] 📰 .]	E.] E.]		■)) (E] E] I	=] =] 🕮	.]
1.5	^z Variabile		Gen. 1	Gen. 2	Gen. 3	Gen. 4	Gen. 5	Gen. 6	Gen. 7	Gen. 8	Gen. 9 Gen.1	
Г	Stato accer	nsione	ON 100%	ON 100%	ON 100%	ON 1009	6 ON 1009	ON 100%	ON 100%	ON 100% C	ON 100% ON 100	
Г	Pressione	[Pa]	47.6>(4.6)	44.2>(4.6)	39.8>(4.5)	34.8>(4.5	5) 29.7>(4.5) 24.6>(4.4)	19.5>(4.4)	14.4>(4.4) 5	9.5>(4.3) 4.7>(4.3	
Г	Velocità Vi	min <v<vmax <="" [m="" td=""><td>s] (0.0)<0.4<(10.0)</td><td>(0.0)<0.6<(10.0) (0</td><td>.0)<0.7<(10.0)</td><td>(0.0)<0.9<(1</td><td>0.0) (0.0)<1.1<(1</td><td>0.0) (0.0)<1.2<(10.0)</td><td>(0.0)<1.4<(10.0) (</td><td>(0.0)<1.5<(10.0) (0.0)</td><td><1.7<(10.0) (0.0)<1.8<(</td><td></td></v<vmax>	s] (0.0)<0.4<(10.0)	(0.0)<0.6<(10.0) (0	.0)<0.7<(10.0)	(0.0)<0.9<(1	0.0) (0.0)<1.1<(1	0.0) (0.0)<1.2<(10.0)	(0.0)<1.4<(10.0) ((0.0)<1.5<(10.0) (0.0)	<1.7<(10.0) (0.0)<1.8<(
Г	Temperatu	ura Tpu>Tr [°C]	34.9>(0.0)	41.3>(0.0)	46.8>(0.0)	50.7>(0.0	0) 53.6>(0.0) 55.8>(0.0)	57.6>(0.0)	59.0>(0.0) 6	0.1>(0.0) 61.0>(0.	
	Massa mW	/c>mW [kg/s]	0.0139>(0.0130)	0.0139>(0.0130) 0.0	0138>(0.0130)	0.0138>(0.0	130) 0.0137>(0.01	130) 0.0137>(0.0130)	0.0136>(0.0130) 0	0.0136>(0.0130) 0.01	35>(0.0130) 0.0135>(0.0	
	Sovrapres	sione Max [Pa]	-41.0<(200.0)	-37.5<(200.0) -	33.1<(200.0)	-28.2<(200	.0) -23.2<(200	0) -18.1<(200.0)	-13.1<(200.0)	-8.2<(200.0) -3	.5<(200.0) 1.2<(200	
•											•	*
_											5	1
	1-09-											
	0.8											
	0.0											
	0.7 -											
	0.6 -											
	0.5 -											
	0.4 -											
	0.3-											
	0.0											
	0.2											
	0.1 -											
	0											L
									Арр	olica soluzione al Pr	ogetto Chiudi	

Al termine della ridefinizione degli interpiani rilanciare il calcolo per la verifica dei nuovi dati.

RISULTATI

La finestra "Risultati del Calcolo" mostra la verifica dell'impianto considerando il rapporto canale da fumo – camino.

Con il Canale da fumo diametro 80 mm, tipico delle caldaie tipo C a camera stagna, la verifica della canna fumaria inizia dal diametro 350 in poi. La buona regola, se non ci sono diverse indicazioni tecnico-commerciali, è di scegliere un diametro per il camino almeno uguale o superiore al canale da fumo.

Nell'esempio si scelga il 350 mm.

CONSIDERAZIONI

La scelta del diametro 350 mm per la canna fumaria risulta sensata in quanto leggendo in prima analisi i risultati principali si hanno valori ottimi sia per quanto riguarda le pressioni sia per la velocità fumi.

STAMPA DEI RESULTATI

La stampa dei risultati dettagliati si esegue cliccando sul tasto "Relaz-CALCOLO" dalla finestra dei "Risultati del Calcolo".

Calcolo Camini : Camini Singoli - UNI EN 13384-1 in pressione positiva - EX_A2

Dati

Si consideri un camino SINGOLO in acciaio al servizio di 1 Generatore di Calore di tipo C a camera stagna. Riferirsi allo schema grafico dell'esempio.

LA CALDAIA HA LE SEGUENTI CARATTERISTICHE :

Tipo:	Caldaia camera	i stagna	tipo C
potenza termica al focolare		24	kW
portata fumi in uscita dal generatore di c	alore	0.011	kg/s
temperatura fumi in uscita dal generator	e di calore	60	°C
rendimento utile		97.5	%
CO2		9	%
tipo combustibile		100	%CH4
Pressione (Prevalenza)		100 Pa	

LA CANNA FUMARIA HA LE SEGUENTI CARATTERISTICHE :

diametro interno del camino	0.80	m
diametro esterno del camino	0.81	m
rugosità della parete interna	0.0001	m
resistenza termica del camino	0.31	m2K/W
Numero piani collegati	1	

ALTEZZE UTILE		6 m		
piano 1 m	tipo combustibile	100	%CH4	4
fattore di espo	osizione della canna fumaria	all'esterno	S0	%
Tipo comigno	lo		antirif	lusso
Coeff.perdita	loc. comignolo		0,8	adim
tipo di raccordo camino-canale da fumo			90	0

IL CANALE DA FUMO HA LE SEGUENTI CARATTERISTICHE :

sviluppo	1.50	m
altezza	1.0	m
diametro interno del cdf	0.80	m
diametro esterno del cdf	0.82	m

resistenza termica	0.02	m2K/W
rugosità interna	0.10	mm
Curva	90	0
coefficiente fluidodinamico curva	0.8	adim.
fattore di esposizione del canale fumo/aria	0.0	%

CONDIZIONI DI FUNZIONAMENTO

temperatura aria		20	°C
temperatura esterna di progetto		0.0	°C
altitudine		200	m
apertura di compensazione		0.0	cm2
coefficiente fluid.apertura > (sezione quadrata)		4	adim
fattore di correzione per temp.non costante	SH	0.5	adim
fattore di sicurezza fluidodinamico	SE	1.2	adim

PROCEDURA DI INSERIMENTO DATI PER ESEGUIRE UN PROGETTO NUOVO

Inserimento dati

Lanciare dall'icona presente sul desktop AsterGen-C; Compare la finestra iniziale e si procede a selezionare "Nuovo":

Compare la finestra principale; nella parter Sx aprire l'albero dei sistemi fumari fino a raggiungere il sistema Singolo>>Generatore a tiraggio forzato>>camera stagna uscita sdoppiatore:

Nella parte di Dx si trova l'icona del sistema "Monoflusso", procedere al doppio click per selezionare il "monoflusso".

Compare di seguito la finestra principale con al centro il sistema in 3D.

E' possibile ora iniziare la definizione del progetto utilizzando i tasti posti a Sx in colonna dall'alto verso il basso.

Anagrafica progetto (vedi sezione precedente di definizione Anagrafiche)

Dati del progetto: Dati del progetto

Cliccare sul tasto per accedere al Menu "Dati del progetto":

Imposta	zioni del Progetto	Riter	Ho Indian I
Selez	zione del sistema	and and the second	Falls
Classe di pressione	DEPRESSIONE / PRESSIONE	~ 4.5	ScIndian
Sistema	Monoparete	Z C TOURS	
Metodo di calcolo Noma Italiana UM 10641 per il calcolo o ventilatore nel circuito di condustrione. Noma Europea EN 13384-2 per il calcolo Verifica di temperatura Secco (assenza di condensa nei fi Umido (presenza di condensa nei f	UNI 13384-1p		The second secon
ASTER GE	Ν	I C ASKA.	
		Via Trevisago 33 25080 MANERBA d/C Tel: 0365-55248 Fax: 0365-551364	5 www.sinapsi.net 5 (BS) info@sinapsi.net 1 supporto@sinapsi.net
		< Indietro	Fine Annulla

- Si selezione la Classe di pressione (Depressione/Pressione)
- Si selezione il sistema (Mono parete)
- Il metodo di calcolo valido per il tipo d'impianto selezionato è UNI 13384-1p
- La verifica è ad Umido.

A compilazione eseguita si seleziona il tasto "Fine"

Wizard – Calcolo:

Si procede alla definizione in sequenza di tutti i tratti costituenti il sistema fumario cliccando sul tasto Wizard-Calcolo:

26. FINESTRA EDIFICIO:

Si selezioni la località (se non già eseguito in precedenza nella scheda delle Anagrafiche). Nel caso si scelga Milano.

Automaticamente sono caricati i dati caratteristici di Milano.

Avanti >

Selezionare

per proseguire

27. FINESTRA COMBUSTIBILE:

Si procede a caricare il combustibile "Metano"

Avanti >

Selezionare

per proseguire

28. FINESTRA GENERATORE:

Generatore		
GENEI	RATORE	
Costruttore	Generico	
Tipologia di Conoratoro	BOILERS	—
Tipologia di combustibilo	Motono	
Equipine Compositione	Tine C	
Famigia		
Wodello	C 24kVV [metano]	
DATI DEL GENERAT	ORE, info di Catalogo	
Tipologia di modello	Murale	
Installazione	Interna	
Tipologia di funzionamento	Standard	
Camera di combustione	Stagna	
Tiraggio	Forzato	
Attacco fumi	Separato	
Diametro Uscita Fumi	80.00 mm	
Diametro Ingresso Aria	80.00 mm	
DATI DI CO	DMBUSTIONE	
Carico	o nominale Carico minimo	
Potenza termica Utile 24.00 kW	7.20 KW	
Rendimento Utile [%] 97.5 %	97.5 %	
Potenza Termica Focolare 24.62 KW	7.38 KW	
Perdite al mantello [%] 1.00 %	1.00 %	
CO2 [%] 9 %	9%	
Pressione -100 Pa	-100 Pa	
Temperatura Fumi 50.1 °C	50.1 °C	
Portata Fumi 0.011228	kg/s 0.003369 kg/s	
Coefficienti Pwcj b0,b1	1,b2,b3,b4 b0,b1,b2,b3,b4	
Coefficienti Twcj	0,v1,v2 v0,v1,v2	
ASTER GEN		SINAPSI INNOTEC s.r.l. Via Trevisago 35 25080 MANERBA d/G (BS) Tel. 0365-552481 Fax. 0365-551364 Supporto@sinapsi.net
		< Indietro Avanti > Annulla

Selezione delle caratteristiche del generatore:

GENERATORE:

Costruttore: Generico Famiglia: Tipo C Modello: Tipo C 24 kW

DATI DEL GENERATORE:

Sono caricati dall'archivio le caratteristiche di funzionamento Diametro uscita fumi: 80 mm

Temperatura fumi: calcolata dal programma Portata fumi: calcolata dal programma Coefficienti Pwcj – Twcj: Non applicabile alla Norma Carico spento: Non applicabile alla Norma

Selezionare Avanti > per proseguire

29. FINESTRA CANALE DA FUMO:

DEFINIZIONE CANALI DA FUMO

All'interno della scheda canale da fumo scegliereCostruttore:SinapsiParete:Mono pareteDiametro:80 mm

DATI DEL CONDOTTO:

sono automaticamente caricati i dati relativi al diametro 80 mm secelto

DATI DELL'INSTALLAZIONE:

Altezza:	1	m
Sviluppo:	1.5	m
Esposizione:	0.0	%

PERDITE DI CARICO:

Perdite di carico: 1 curva 90°, equivalente a 0.6

Selezionare

30. FINESTRA CANALE ARIA:

DEFINIZIONE CANALE ARIA

All'interno della scheda canale aria scegliere

Costruttore:	Sinapsi
Parete:	Mono parete

Diametro : 80 mm

DATI DEL CONDOTTO:

sono automaticamente caricati i dati relativi al diametro 80 mm secelto

DATI DELL'INSTALLAZIONE:

Altezza:	1	m
Sviluppo:	1.5	m

Esposizione:	0.0	%
PERDITE DI CARICO:		
Perdite di carico:	1 curva	a 90°, equivalente a 0.6
Selezionare Avanti >	Der p	roseguire

31. FINESTRA TRATTO DI PARTENZA:

Tratto di partenza	
TRATTO DI PARTENZA	
DATI DELL'INSTALLAZIONE Altezza fino al primo allacciamento 0.500 m	
	Hb
ASTER GEN	SINAPSI INNOTEC s.r.l. Via Trevisago 35 25080 MANERBA d/G (BS) Tel. 0365-552481 Fax. 0365-551364 Supporto@sinapsi.net
	< Indietro Avanti > Annulla

32. FINESTRA CAMINO / TRATTO TERMINALE:

Scheda Camino

All'interno della scheda Camino scegliere:

Selezione della Parete: Mono parete

Diametro : Prova tutti i diametri

DATI DEL CONDOTTO:

lasciare vuoto (sarà poi compilato automaticamente alla fine del progetto una volta trovato il diametro ottimale)

DATI DELL'INSTALLAZIONE:

Altezza:	6	m
Sviluppo:	6	m
Esposizione:	0.0	%
Raccordo:	T90°	

Avanti >

PERDITE DI CARICO:

Perdite di carico:

Nessuna

Selezionare

per proseguire

33. FINESTRA TERMINALE:

All'interno della scheda terminale scegliere

Forma: Antiriflusso (è possibile variare il valore della perdita di carico del terminale se nota)

Selezionare

Menù Risultati del Calcolo

Scelta	Verifica	Funzionamento	Camino	Canale Fumo	Pressione [Pa]	Velocità [m/s]	Temp.Par.Est. [°C]	Relazione	Relazione
•	4	Pressione	80 Parete Semplice Si Guarn.	80 Alluminio	-7.8	2.16	39	Relazione Dettagliata	Relazione Ridotta
Γ	ø	Pressione negativa	100 Parete Semplice Si Guarn.	80 Alluminio	0.6	1.38	35	Relazione Dettagliata	Relazione Ridotta
Γ	4	Pressione negativa	120 Parete Semplice Si Guarn.	80 Alluminio	3.1	0.96	32	Relazione Dettagliata	Relazione Ridotta
Г	A	Pressione	130 Parete Semplice Si	80 Alluminin	3.8	0.82	31	Relazione	Relazione Ridotta
CA50-1	E CASO-2	CASO-3	4 🔛 Note						
^z Variabile		Gen. 1							
Stato acc	ensione	ON 100%							
Pression	e [Pa]	7.8<(97.9)							
Droce Dr	OCDTEX [Dal	7 9<(200.0)							
Press. Pz	o <pzex [pa]<br="">o+Pfv<pfvex [pa]<="" td=""><td>7.8<(200.0)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pfvex></pzex>	7.8<(200.0)							
Press. Pz Press. Pz	o <pzex [pa]<br="">o+Pfv<pfvex [pa]<="" td=""><td>7.8<(200.0) 10.1<(200.0)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pfvex></pzex>	7.8<(200.0) 10.1<(200.0)							
Press. Pz Press. Pz	o <pzex [pa]<br="">o+Pfv<pfvex [pa]<="" td=""><td>7.8<(200.0) 10.1<(200.0)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pfvex></pzex>	7.8<(200.0) 10.1<(200.0)							
Press. Pz Press. Pz	o <pzex [pa]<br="">o+Pfv<pfvex [pa]<="" td=""><td>7.8<(200.0) 10.1<(200.0)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pfvex></pzex>	7.8<(200.0) 10.1<(200.0)							
Press. Pz Press. Pz	co <pzex [pa]<br="">co+Pfv<pfvex [pa]<="" td=""><td>7.8<(200.0) 10.1<(200.0)</td><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td></pfvex></pzex>	7.8<(200.0) 10.1<(200.0)							4
Press. Pz Press. Pz	o <pzex [pa]<br="">o+Pfv<pfvex [pa]<="" td=""><td>7.8<(200.0) 10.1<(200.0)</td><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td></pfvex></pzex>	7.8<(200.0) 10.1<(200.0)							4
Press. P2 Press. P2	co <pzex [pa]<br="">co+Pfv<pfvex [pa]<="" td=""><td>7.8<(200.0) 10.1<(200.0)</td><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td></pfvex></pzex>	7.8<(200.0) 10.1<(200.0)							4
Press. P2 Press. P2	co-PZEX [Pa] co+Pfv <pfvex [pa]<="" td=""><td>7.8<(200.0) 10.1<(200.0)</td><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td></pfvex>	7.8<(200.0) 10.1<(200.0)							4
Press. P2 Press. P2 1- 0.9- 0.8-	co-PzEx [Pa] co+Pfv <pfvex [pa]<="" td=""><td>7.8<(200.0) 10.1<(200.0)</td><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td></pfvex>	7.8<(200.0) 10.1<(200.0)							4
Press. P2 Press. P2 1- 0.9- 0.8- 0.7-	co-PzEx [Pa] co+Pfv-PfvEx [Pa]	7.8<(200.0) 10.1<(200.0)							4
Press. P2 Press. P2 0.9 0.8 0.7 0.6	co-PzEx [Pa] co+Pfv-PfvEx [Pa]	7.8<(200.0) 10.1<(200.0)							4
Press. P2 Press. P2 0.9 0.8 0.7 0.6 0.5	co-PzEx [Pa] co+Pfv <pfvex [pa]<="" td=""><td>7.8<(200.0) 10.1<(200.0)</td><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td></pfvex>	7.8<(200.0) 10.1<(200.0)							4
Press. P2 Press. P2 0.9 0.8 0.7 0.6 0.5 0.4	co-PzEx [Pa] co+Pfv <pfvex [pa]<="" td=""><td>7.8<(200.0) 10.1<(200.0)</td><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td></pfvex>	7.8<(200.0) 10.1<(200.0)							4
Press. P2 Press. P2 0.9 0.8 0.7 0.6 0.5 0.4 0.3	co-PzEx [Pa] co+Pfv <pfvex [pa]<="" td=""><td>7.8<(200.0) 10.1<(200.0)</td><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td></pfvex>	7.8<(200.0) 10.1<(200.0)							4
Press. P2 Press. P2 0.9 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2	co-PzEx [Pa] co+Pfv <pfvex [pa]<="" td=""><td>7.8<(200.0) 10.1<(200.0)</td><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td></pfvex>	7.8<(200.0) 10.1<(200.0)							4
Press. P2 Press. P2 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1	co-PzEx [Pa] co+Pfv <pfvex [pa]<="" td=""><td>7.8<(200.0) 10.1<(200.0)</td><td></td><td></td><td></td><td></td><td></td><td></td><td>۰ •</td></pfvex>	7.8<(200.0) 10.1<(200.0)							۰ •
Press. P2 Press. P2 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0	co-PzEx [Pa] co+Pfv <pfvex [pa]<="" td=""><td>7.8<(200.0) 10.1<(200.0)</td><td></td><td></td><td></td><td></td><td></td><td></td><td>, </td></pfvex>	7.8<(200.0) 10.1<(200.0)							,
Press. P2 Press. P2 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0	co-PzEx [Pa] co+Pfv <pfvex [pa]<="" td=""><td>7.8<(200.0) 10.1<(200.0)</td><td></td><td></td><td></td><td></td><td></td><td></td><td>, </td></pfvex>	7.8<(200.0) 10.1<(200.0)							,

RISULTATI

La finestra "Risultati del Calcolo" mostra la verifica dell'impianto considerando il rapporto canale da fumo – camino.

Inizia ad avere verifica positiva dal diametro 80 in poi.

Nell'esempio si scelga l' 80mm.

CONSIDERAZIONI

La scelta del diametro 80 mm per la canna fumaria risulta sensata in quanto leggendo in prima analisi i risultati principali si hanno valori buoni sia per quanto riguarda le pressioni sia per la velocità fumi. Risulta quindi possibile utilizzare un diametro in pressione positiva grazie alla verifica 13384-1 pressione positiva.

STAMPA DEI RISULTATI

La stampa dei risultati dettagliati si esegue cliccando sul tasto "Relaz-CALCOLO" dalla finestra dei "Risultati del Calcolo".

Calcolo Camini : Camini Singoli - UNI 13384-1 - EX_A1 GRUPPI ELETTROGENI

Dati

Si consideri un camino SINGOLO in acciaio al servizio di 1 Gruppo elettrogeno a gasolio. Riferirsi allo schema grafico dell'esempio.

IL GRUPPO ELETTROGENO HA LE SEGUENTI CARATTERISTICHE :

Tipo :	Gruppo elettrogeno a gasolio
Portata fumi :	0.5 Kg/s
Temperatura fumi:	400°
O2 :	2%
Pressione in uscita :	1000 Pa
Diametro uscita fumi:	300 mm

IL CAMINO HA LE SEGUENTI CARATTERISTICHE :

forma :	CIRCOLARE
diametro interno :	(incognito) m
diametro esterno :	(incognito) m
rugosità della parete interna :	0.0001m
resistenza termica del camino :	0.59 m2K/W
altezza efficace :	8 m
fattore di esposizione del camino all'esterno :	S 100 %
Tipo comignolo :	antiriflusso
Coeff.perdita loc. comignolo :	0,8 adim
tipo di raccordo camino-cdf :	90°

IL CANALE DA FUMO HA LE SEGUENTI CARATTERISTICHE :

sviluppo :	2 m
altezza :	1 m
diametro interno del cdf :	0.300 m
diametro esterno del cdf :	0.350 m
resistenza termica :	0.59 m2K/W
rugosità interna :	0.0001 m
curva :	1 a 90°

coefficiente fluidodinamico curva :	0.8 adim.
fattore di esposizione del canale :	0.0 %

CONDIZIONI DI FUNZIONAMENTO

temperatura aria :	15°C
temperatura esterna di progetto :	0.0°C
altitudine :	200 m
fattore di correzione per temp :	non
costante SH:	0.5 adim
fattore di sicurezza fluidodinam. SE :	1.5 adim

Collettori per Caldaie in batteria - Calcolo con EN13384-2 in Pressione positiva - EX_D1

Dati

Si consideri una canna fumaria SEMPLICE CIRCOLARE in acciaio al servizio di 1 collettore per 4 Generatori di Calore di tipo ad aria soffiata. Riferirsi allo schema grafico dell'esempio .

LE CALDAIE HANNO LE SEGUENTI CARATTERISTICHE :

Tipo:	Pressurizzata	
Diametro uscita fumi	125 mm	٦
Combustibile	gas me	tano
Dati a carico nominale		
potenza utile	100	kW
perdite al mantello	1	%
portata fumi in uscita dal generatore di calore	0.0429	kg/s
pressione	100	Pa
rendimento utile	97	%
CO2	10	%
Dati a carico minimo		
potenza utile	30	kW
perdite al mantello	1	%
portata fumi in uscita dal generatore di calore kg/s	0.01287	7
pressione	100	Pa
rendimento utile	97	%
CO2	10	%

LE CANNA FUMARIA HA LE SEGUENTI CARATTERISTICHE :

diametro interno del camino	da dime	nsionar	е
diametro esterno del camino			m
rugosità della parete interna		0.50	mm
resistenza termica del camino		0.40	m2K/W
Numero allacciamenti		1	
ALTEZZA EFFICACE		5	m
fattore di esposizione all'esterno		100	%
Tipo comignolo		antiriflu	SSO
Coeff.perdita loc. comignolo		0,8	adim
tipo di raccordo camino-collettore		90	0

I CANALI DA FUMO HANNO LE SEGUENTI CARATTERISTICHE :

sviluppo	1.0	m
altezza	0.5	m
diametro interno del cdf	0.13	m
diametro esterno del cdf	0.18	m
resistenza termica	0.40	m2K/W
rugosità interna	0.50	mm
fattore di esposizione del canale fumo/aria	0.0	%
curve	n°1 a 9	0°

CONDIZIONI DI FUNZIONAMENTO

temperatura aria		20	°C
temperatura esterna di progetto		0.0	°C
altitudine		200	m
apertura di compensazione		0.0	cm2
coefficiente fluid.apertura > (sezione quadrata)		4	adim
fattore di correzione per temp.non costante	SH	0.5	adim
fattore di sicurezza fluidodinamico	SE	1.5	adim

TIPOLOGIA CANNA FUMARIA

Nello schema è evidenziata la corrispondenza degli elementi da definire nel progetto.

DEFINIZIONE GENERATORI

1. va ricordato che i dati primari di un generatore di calore sono :

Potenza utile

Perdite al mantello

CO2

Rendimento utile

Da essi si ricavano : portata fumi, temperatura fumi, composizione fumi

In più va definita la pressione che viene interpretata come una prevalenza disponibile nel caso sia negativa e come un tiraggio richiesto nel caso in cui sia positiva. Nel caso di un generatore tipo C è normale inserire un pressione positiva residua disponibile allo sbocco.

2. la colonna dei dati **Pwcj** e **twcj** è riferita ai coefficienti richiesti dalla EN 13384-2. Nel caso venga lasciata l'opzione default spuntata

default : Pwci

il programma di calcolo carica i coefficienti standard dalla tabella B.2 della EN 13384-2 (vedere Appendice sui dettagli). Tali coefficenti sono proposti dalla norma (la tabella è un annesso informativo e non vincolante) nel caso in cui il costruttore del generatore non li dichiari. I coefficienti di tale tabella sono severi in quanto assumono valori conservativi rispetto ai casi reali. Si consiglia di chiederli al costruttore del generatore di calore o, in casi estremi, di inserire un valore di 50 per il coefficiente b2 e un valore per b1 pari a –(prevalenza +b2). Ad esempio nel caso specifico di questo progetto i coefficenti diventeranno :

carico massimo : b0=-50, b1=0, b2=50, b3=0, b=0

carico minimo : b0=-50, b1=0, b2=50, b3=0, b=0

2. Il carico spento prevede un'insieme di coefficienti di pressione Pwcj come nel carico massimo e minimo. Anche qui i coefficienti possono essere caricati con il valore di default previsto dalla tabella B.2 della norma EN13384-2. Il valore di tali coefficienti non è così marginale come potrebbe sembrare in quanto esso determina la quantità di aria (e non più di fumi) che i generatori di calore spenti lasciano transitare e quindi convogliano in canna fumaria quando esiste una condizione di tiraggio ai loro capi (ingresso aria/ uscita fumi). Il valore previsto da tale tabella è :

Applicando tali coefficienti alla formula (12) della EN 13384-2 risulta che la caratteristica di comportamento del generatore spento è :

$$P_{Wc,j} = 50 \cdot \left(\frac{\bullet}{\frac{m_{Wc,j}}{m_{W,j}}}\right)^2$$

cioè

$$\mathbf{\dot{m}}_{Wc,j} = \mathbf{\dot{m}}_{W,j} \cdot \sqrt{\frac{P_{Wc,j}}{50}}$$

In definitiva la portata di aria "parassita" addotta dal generatore spento può essere, nel caso ad esempio di un tiraggio di 10 Pa, pari a:

$$m_{W_{c,i}} = m_{W_{i}i} \cdot 0.4472$$

Cioè il 44,72 % della portata massima nominale di fumi. Nei casi reali di un generatore tipo C ci si può attendere un valore ben inferiore di portata aria e quindi un coefficiente b2 superiore a 50.

PROCEDURA DI INSERIMENTO DATI PER ESEGUIRE UN PROGETTO NUOVO

Inserimento dati

Lanciare dall'icona presente sul desktop AsterGen-C; Compare la finestra iniziale e si procede a selezionare "Nuovo":

Compare

Compare la finestra principale; nella parter Sx aprire l'albero dei sistemi fumari fino a raggiungere il sistema Singolo al servizio di più generatori>>Generatore a tiraggio forzato>>pressurizzata - aria soffiata:

Nella parte di Dx si trova l'icona del sistema "PRESS-ARIA SOFF. 4 ", procedere al doppio click per selezionare il sistema.

Compare di seguito la finestra principale con al centro il sistema in 3D.

E' possibile ora iniziare la definizione del progetto utilizzando i tasti posti a Sx in colonna dall'alto verso il basso.

Anagrafica progetto (vedi sezione precedente di definizione Anagrafiche)

Anagrafica progetto

Dati del progetto: Dati del progetto

Cliccare sul tasto per accedere al Menu "Dati del progetto":

						×
Impostazion	ni del Progetto				Riter	H Gind tan Vill s 2º Indian X
Classe di pressione	[N11/[P1]		ALL ALL ALL	(AIN)	The state	Cr St
Sistema	Parete Doppia inox sp.25		0	199	Z	Pa lo Indiana
Metodo di Calcolo	UNI EN 13384-2p	•	R. Q.	9		
Camini in pressione positiva asserv {collettive e sistemi in batteria}	iti a più apparecchi di riscaldamer	to		R	2 Ke	100
Verifica di temperatura	Verifica a Umido		ide	+ //	III	HI BERG
Secco (assenza di condensa nei fumi) Umido (presenza di condensa nei fumi)			y	So to to	W	and a state
Fattore di sicurezza SH	0.5					Kruzoff I
Fattore di sicurezza SE	1.2		T	C	234	
Fattori di sicurezza SH consigliato da Fattori di sicurezza SE consigliato da	alla norma : 0.5 alla norma : 1.2		1		P	
Conf. di Disegno			1 S	KA.		
ASTER GEN					SINA Via Trevisago 35 25080 MANERBA d/G Tel. 0365-552481 Fax. 0365-551364	APSI INNOTEC s.r.l. www.sinapsi.net info@sinapsi.net supporto@sinapsi.net
	3	Genera d	segno 📄 🖄	Wizard-Calcolo	< Indietro	Fine Annulla

- Si selezione la Classe di pressione (Depressione/Pressione)
- Si selezione il sistema (Doppia parete)
- Il metodo di calcolo valido per il tipo d'impianto selezionato è UNI 13384-2 p
- La verifica è ad Umido.

A compilazione eseguita si seleziona il tasto "Fine"

Wizard – Calcolo:

Si procede alla definizione in sequenza di tutti i tratti costituenti il sistema fumario cliccando sul tasto Wizard-Calcolo:

34. FINESTRA EDIFICIO:

Si selezioni la località (se non già eseguito in precedenza nella scheda delle Anagrafiche). Nel caso si scelga Milano.

Automaticamente sono caricati i dati caratteristici di Milano.

Avanti >

Selezionare

per proseguire

35. FINESTRA COMBUSTIBILE:

Si procede a caricare il combustibile "Metano"

Avanti >

Selezionare

per proseguire

36. FINESTRA GENERATORE:

Generatore				
	GENERA	TORE		
Costruttoro	wanter rr	Gonorico		11
Esmidia		Dragourizz	rata Cand	
Famiglia		Pressunzz	cata - Cond	
Modello		Cond. Pre	ss. 100 kVV [metano]	
DATI DEL O	GENERATORI	E, info di	Catalogo	
Installazione	1	Interna		M
Tipologia di funzionamento		Condensazi	one	Π
Camera di combustione	1	Aperta		
Tiraggio		Forzato		
Attacco fumi		Separato		
Diametro Uscita Fumi		125.00 mm	- Ji	
D	ATI DI COMB	USTIONE		
		>> Copia	carico >>	
	Carico nor	minale	Carico minimo	
Potenza Termica Utile	100.00 kW	-	30.00 kW	
Rendimento Utile	97 %		97 %	I
Potenza Termica Focolare	103.09 kW		30.93 kW	_
Perdite al mantello	1.00 %		1.00 %	
CO2 fumi anidri	10.00 %		10.00 %	
Pressione in Uscita	100 Pa		100 Pa	
Temperatura Fumi	63.6 °C		63.6 °C	
Portata Fumi	0.042901 kg/s	5	0.012870 kg/s	
Portata Volumetrica Fumi	153.68 m³/h		46.10 m³/h	
Coefficienti Pwcj	b0,b1,b2,	b3,b4	b0,b1,b2,b3,b4	
Coefficienti Twcj	y0,y1,y	y2	y0,y1,y2	
Carico spento	b0,b1,b2,	b3,b4	y0,y1,y2	
ASTER G	EN		1	SINAPSI INNOTEC s.r.l. Via Trevisago 35 www.sinapsi.net 25080 MANERBA d/G (BS) Tel.0385-552481 info@sinapsi.net Fax.0365-551364 supporto@sinapsi.net
🛛 Copia negli Og	getti Sim	ili		< Indietro Avanti > Annulla

Selezione delle caratteristiche del generatore:

GENERATORE:

Costruttore: Generico

Famiglia: Condensazione pressurizzata

Modello: 100 kW

DATI DEL GENERATORE:

Sono caricati dall'archivio le caratteristiche di funzionamento Diametro uscita fumi:125 mm

DATI DI COMBUSTIONE:

Vedere dati input:

Coefficienti Pwcj : **

Twcj: **

Carico spento: **

** Calcolati automaticamente dal programma

possono essere modificati dall'utente cliccando sui relativi tasti:

Coefficienti Pwcj	b0,b1,b2,b3,b4	b0,b1,b2,b3,b4
Coefficienti Twcj	y0,y1,y2	y0,y1,y2
Carico spento	b0,b1,b2,b3,b4	y0,y1,y2

37. FINESTRA CANALE DA FUMO:

DEFINIZIONE CANALI DA FUMO

All'interno della scheda canale da fumo scegliere

Costruttore:		gener	ico
Parete:		Doppi	a parete
Diametro	:	130	mm

DATI DEL CONDOTTO:

sono automaticamente caricati i dati relativi al diametro 130 mm secelto

m

DATI DELL'INSTALLAZIONE:

Altezza: 0.5

Sviluppo:	1	m
Esposizione:	0.0	%

PERDITE DI CARICO:

Perdite di carico:		1 curva 90°, equivalente a 0.6
Selezionare	Avanti >	per prosequire

38. FINESTRA COLLETTORE (tratto tra camino e 1° generatore):

DEFINIZIONE COLLETTORE

DATI DEL CONDOTTO:				
Diametro	:	cerca ottimale	mm	
Parete:		Doppia parete		
Costruttore:		generico		
All'interno della scheda collettore				

DATI DELL'INSTALLAZIONE:

Altezza:	0	m
Sviluppo:	2	m
Esposizione:	0.0	%

PERDITE DI CARICO:

Perdite di carico: -			
Salazianara	Avanti >		
Selezionare		per proseguire	

39. FINESTRA COLLETTORE (tratto tra i generatori):

DEFINIZIONE COLLETTORE

All'interno della scheda collettore			
Costruttore:		generico	
Parete:		Doppia parete	
Diametro	:	cerca ottimale	mm

DATI DEL CONDOTTO:

DATI DELL'INSTALLAZIONE:

Altezza:	0	m
Sviluppo:	1	m
Esposizione:	0.0	%

PERDITE DI CARICO:

Perdite di carico: Selezionare Avanti > per proseguire

40. FINESTRA TRATTO DI PARTENZA:

41. FINESTRA CAMINO:

Scheda Camino

All'interno della scheda Camino scegliere:

Selezione della Parete: doppia parete

Diametro : Prova tutti i diametri

DATI DEL CONDOTTO:

lasciare vuoto (sarà poi compilato automaticamente alla fine del progetto una volta trovato il diametro ottimale)

DATI DELL'INSTALLAZIONE:

Altezza:	5	m
Sviluppo:	5	m
Esposizione:	0.0	%
Raccordo:	T90°	

PERDITE DI CARICO:

All'interno della scheda terminale scegliere Forma: Tronco di Cono

Selezionare Fine per proseguire e avviare il calcolo

Menù Risultati del Calcolo

RISULTATI

La finestra "Risultati del Calcolo" mostra la verifica dell'impianto considerando il rapporto canale da fumo - collettore– camino.

Con il Canale da fumo diametro 130 mm e il collettore diametro 250 mm, la scelta ottimale del diametro della canna fumaria inizia dal diametro 250 mm.

CONSIDERAZIONI

La scelta del diametro 250 mm per la canna fumaria risulta sensata in quanto leggendo in prima analisi i risultati principali si hanno valori ottimi sia per quanto riguarda le pressioni sia per la velocità fumi.

E' tuttavia possibile ricercare un diametro del camino che risulti funzionare in pressione negativa, nel caso particolare dal diametro 400 mm in poi.

STAMPA DEI RESULTATI

La stampa dei risultati dettagliati si esegue cliccando sul tasto "Relaz-CALCOLO" dalla finestra dei "Risultati del Calcolo".